Int. J. Solids Structures Vol. 35, No. 23, pp. 3029-3042, 1998
@ Pergamon © 1998 Elsevier Science Ltd

All rights reserved. Printed in Great Britain
PII: S0020-7683(97)00362—4

0020-7683/98 $19.00 + .00

METHOD OF TRANSLATIONS FOR A MODE 1
ELLIPTIC CRACK IN AN INFINITE BODY. PART I:
POLYNOMIAL LOADING

I. V.ORYNYAK*
Institute for Problems of Strength, National Academy of Sciences of Ukraine,
2 Timiryazevskaya Str., Kyiv, 252014, Ukraine

(Received 15 January 1997 ; in revised form 3 November 1997)

Abstract— A method has been proposed for determining the displacement of the elliptic crack faces
in an infinite body and consequently stress intensity factors under the action of polynomial loading.
The method is based : on the Rice integral formula which relates the stress and displacement fields
for two different states of a body ; on Dyson’s theorem which defines the form of the displacement
field for the prescribed law of the action of the polynomial loading; on the theory of the elliptic
crack translations in a nonuniform stress field developed in the present study; and finally on the
known solution for a uniform loading.

The method proposed does not require the solution of boundary problem and actually rep-
resents itself the recurrent procedure for step by step determination of the displacement field for
higher and higher degrees of polynomial loading. In its structure, objectives and complexity the
method corresponds to the weight function methods known in the literature whose main feature is
the use of the known particular solutions for the given body in order to obtain new solutions. ©
1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

In spite of an abundance of computation software for calculating stress intensity factors,
K, for 3-D bodies with a mode I crack [see, for example, FEM-based ones developed by
Raju and Newman (1982), Shiratori (1986)], the development of theoretical methods and
obtaining exact analytical solutions remains a topical problem. They are necessary :

(1) to verify the exactness of the computational software or approximate fundamental
solutions for K; (see, for example, Qore and Burns, 1980; Orynyak et al., 1994} ;

(2) to develop the theory itself whose methods can be applied to solve other problems;

(3) to develop combined methods which allow K; determination in a body with a crack on
the basis of more simple FEM-based calculations for the same body without crack (see,
for example, Nishioka and Atluri, 1982 ; Nishioka and Atluri, 1983).

From the standpoint of mathematics the problem of K; determination is reduced to the
solution of the problem of the potential theory and the fundamental integrodifferential
equation has the following form (see, for example, Walpole, 1970) :

PR U(E, n) dEdn
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(5)

where (x, y) and (&, ) are Cartesian coordinates in the crack plane related to the centre of
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Fig. 1. The nomenclature of elliptical crack.

the elliptic crack (Fig. 1); S is the crack area; L is some constant related to the material
elastic constants; p(x, y) is the load acting on the crack faces; U(&, ) are the displacements
of the crack surface points. Displacements U(&, n) are to defined for the given loading of
the crack faces.

For infinite bodies fundamental solutions [i.e. for any p(x, y) law] exist only for a semi-
infinite crack with a straight front (see Uflyand, 1968) and for a penny-shaped crack (Galin,
1953). So far there is no such fundamental solution for an elliptic crack, though in the case
of the polynomial law of load distribution on the crack faces there exist two radical
approaches to the solution of the problem.

The first approach originates from the works of Green and Sneddon (1950) and Kassir
and Sih (1966), who obtained analytical solution for an elliptic crack subjected to uniform
normal and shear loading, respectively. It is based on the solution of a boundary problem
for a half-space in the formulation of Trefftz (1928) and it involves the introduction of the
Lamé ellipsoidal function. Later on Segedin (1967) proposed a general form of the harmonic
potential function for the case of polynomial loading of the crack faces. Those results were
used in subsequent researches of Shah and Kobayashi (1971) who obtained a solution for
normal polynomial loading up to the third degree, Vijayakumar and Atluri (1981) who
presented a general procedure of the solution for an elliptic crack loaded by arbitrary
normal and shear stresses.

The second approach is based on the use of the old theorem of Dyson (1891), the
results of which were repeated later independently in the works of Galin (1947) and Kassir
and Sih (1966). This theorem was used in the works of Borodachev, A. N. (1981) and
Borodachev, N. M. e al. (1992) who repeated some results of Shah and Kobayashi (1971)
and obtained a general structure of solution (but not the solution itself) for the crack faces
loaded up to the fourth degree. For cracks Dyson’s theorem is reduced to the following: if
polynomial loading of the crack faces p(x, y) is prescribed

P(x.3) = P, (ﬁ) (%) ®)

the displacement U(&, ) of an arbitrary point C (Fig. 1) on the upper crack surface has the
following form:

P,--'a mon=itj o g“ n n
ugm =220 ¥ g, (—) (%) (€

m+n=0 a

where for convenience it is designated
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Here H is the Young modulus; a, b are the ellipse semi-axes; ¢, are some coeflicients
depending on the ratio of the ellipse semi-axes 4 = a/b < 1. Coefficients ¢} ,,(1) are deter-
mined by substituting expressions (B) and (C.1) into the integrodifferential eqn (A) of the
elasticity theory. Then in an arbitrary point of the crack contour C the stress intensity
factor K is equal to (see, for example, Sih and Liebowitz, 1968) :

m+n=i+j
Ki() = py/mall'(2) Y gi,(A) sin” tcos" ¢ (D.1)
m+n=0
or
Ki(t) = py/nall* (DK (D.2)

where K is the dimensionless stress intensity factor, 7 is the parametric angle of the contour
point C, with 1gf = Atgt (Fig. 1) and

I1(0) = (sin® t+ 1% cos’ 1) (D.3)

This approach was first used by Panasyuk (1968) who obtained the solution of inte-
grodifferential eqn (A) for a uniform stress. In spite of the fact that the use of Dyson’s
theorem eliminates the necessity of using a cumbersome apparatus of Lamé ellipsoidal
functions and Jacobian elliptic functions, yet the method is rather complicated for obtaining
new solutions for K| in practice.

The goal of the present paper is to develop the third, alternative approach to the
solution of the problem for an elliptic crack with the polynomial loading of its faces. The
method proposed does not require the solution of boundary problem and actually represents
itself the recurrent procedure for step by step determination of the displacement field for
higher and higher degrees of polynomial loading. The methods is applicable only to infinite
geometry. For finite medium other methods as Martin’s (1986) polynomial expansion
method and Roy and Chatterjee’s (1994) integral equation method have wider use.

2. THE IDEAS BORROWED FROM THE LITERATURE

In its structure, objectives and complexity the method corresponds to the engineering
weight function methods known in the literature whose main feature is the use of the known
particular solutions for a given body in order to obtain new solutions (see, for example,
Petroski and Achenbach, 1978 ; Fett, 1988). The method involves the following known
results:

(1) Dyson’s theorem the essence of which is given above. As it follows from the theorem,
if the displacements of the surface points are presented in the form:

U = a0 (g) (g) M

the loads corresponding to them are a polynomial series
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P = S <Z> (%)j. Q)

i+j=0 a

For this reason two equivalent formulations of the objective of the present work can be
given:
(a) to determine coefficients g}/, of the displacement expansion in formula (C.1) for the
given law of the crack faces loading (B);
(b) to determine coefficients p}J, of the stress expansion in formula (2) for the given law
of the crack faces displacement (1).
(2) Rice’s formula of energy balance (Rice, 1972), which relates integrally the stress inten-
sity factors (for two different states of a body) with the applied loading for the first
state and with the displacement field for the second one:

1 [ KIK? -
5| g oldr = ||peutds 3)

where the upper indices refer to the first and second states, respectively; U7 is the
virtual variation of the displacement field induced by the virtual translation of the crack
front é/; S is the crack area; I is the length of the crack contour. It is important to
note that the derivation of formula (3) involved the assumption that the stress field did
not change during the translation of the crack.

(3) The solution of Green and Sneddon (1950) for uniform loading, i.e. if

P(X,¥) = Poo> (4a)
then
U = frr (4b)
I1'/4 (6
Ki(6) = —E((}c)—‘/a (40)

where E(k) is complete elliptic integral of the second kind, &% = 1 — 4%

(4) The notion of the crack front points translation which retains the ellipticity of the crack
shape (see Cruse and Besuner, 1975). These types of translations are presented in the
most ordered fashion in the works of Vainshtok (1988) and Vainshtok and Var-
folomeyev (1990). Retaining mainly their designations, we shall write with some adjust-
ments:

R(®
51=cosw5R=cosa)~%,us-5Tj s=1,...,5 (5a)

U, n) =WoT, s=1,...,5 (5b)

where w is the angle between the radius-vector R(9) of the contour point € and the normal
to the crack contour (Fig. 1), and

a
R(6) = (6a)

J/sin? 8442 cos? 0
cosw =(sin? 0+ 4% cos? B)(sin® O+ A% cos? ) '/ (6b)

Here the quantity s is the number of the translation which retains the crack contour



Translations for mode I elliptic crack. Part 1 3033

ellipticity ; 47, is the characteristic parameter of the s-translation ; p, is the coefficient of the
contour x-translation. According to Vainshtok and Varfolomeyev (1990), there are five
linearly independent translations of the contour points. Those translations are related to
the changes in the crack semi-axes (07, = da; 8T, = db) ; rigid displacement of the crack
in the direction of the axes x and y (875 = 8y; 4T, = dx) ; and finally a rotation of the crack
as a unit by an angle of ¢ (375 = d¢) in an anti-clockwise direction. For those translations
the p, and W, values have the following form:

2

py =sin’t; p, = Acos’t; u; =sint; py = Acost; ps = — sin2t (7a—€)

22
oUu AoU A2oU  oU
W1=$+55—;, 2=—;ﬁ+55 (8a-b)
oU ou ouU
W, —_a’g, W4—_a_n, W5=_% (8c—¢)

From the first and the second translations one can form their linear combination when
both crack semi-axes vary simultaneously with da = 4#b, i.e. the A value does not change
during translation. Designate this translation as zero one, then 6T, = da and

Ho =1 7
oU  oU
Wo =341 7ab (8)

Expressions (7) for p, are always valid, while expression (8) for W, hold true for the case
of uniform loading of the crack faces. The fact is that during translation the crack gets as
if in another stress field with respect to its centre and axes. For the subsequent analysis we
have to develop the theory of translations in a nonuniform stress field.

3. THE THEORY OF TRANSLATIONS IN A POLYNOMIAL FIELD

The aforementioned five translations can be divided into two groups: for the first two
translations the crack shape and dimensions are changing ; for the next three translations
the crack location is changing (the positions of the centre or the axes). For the polynomial
load (B) the translation of the first group results in the change of the load scale, whereas
the translation of the second group changes the very law of the load action with respect to
the crack centre. Consider each translation individually. Assume that the stresses expressed
by law (B) are applied to the faces of the old (nontranslated) crack. The values of semi-
axes, local (related to the crack centre or axes) coordinates, displacement of the surface
points, etc., changed as a result of translations, will be designated in this section with
subscript 1. Thus:

Translation S = 0

b, =b+6b a =a+ba; A-0b=9ba; i-b=a; O6T,=da

For the new crack the law of loading of its faces is given in the form:

TOAVLA YL Ay b 6
nen=n () @) ] (E) =n G 052} o

i.e. in accordance with eqn (9) a change occurred in the law of the loading. According to
Dyson’s theorem new displacement U (¢,,#,) for loading eqn (9) are equal to:
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mensiti S EN (Y b da
U, zpija]Q(alabl) z 7 (;‘) <b—1) (1+J_b‘+l_a‘) (10)

m+n=0 13

Since 6U = U, — U, comparing eqns (C.1) and (10) we get:

oU _ Py (SN (Y " AWLAP
e (o (o

m+n=0
(11a)
or in another interpretation
ou au  ou ap(y,x)  dp(y,x)
57, = Vo= Uab”](” da  Adb (110)

where U(P(x, y)) is the displacement of the surface points induced by forces P(x, y). It is
evident that in the case of a uniform loading §P/éa = §P/6b = 0, and expression (11b)
coincides with eqn (8f).

Translation S = 1
da A?

5
ay =a+éa: b,=b: A =i+ ki =k=222". 5T, =éa
a a k

The normalized law of the crack faces loading:

i 3 f ]i i J 5
3 R [ 2 B

Considering (C.1) the displacement corresponding to loading (12) is equal to:

5 mtn=i+j m n
U(él,m)—pu<1+l—>alﬂ DI (k)(é> (%) (13)

m+n=0

Comparing new displacement (13) with the old ones (C.1), we obtain:

SU pi‘i <§>~ m+n=i+j é m n
2w, = y qm,l(k)< ) (”)

Q m+n=0 b
mn=i+j m n
+p,Q ZO gy, (ﬁ) <g> (1—-A4,+i—m) (14a)
m+n

or

sU U 2 aU op
W = - 14
o, =" = Taa T U( ) (145)

where
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iy At 2q4,
ayfdf — . i
Vmn (K) kg ok (15)

mn

In the case of uniform loading, expressions (14b) and (8a) coincide.
Translation S = 2

ob ob A?
a, =a, b]=b—5b, }n]:-).(l—-F), k1=k+‘l*)‘?, 5T2=5b

Similarly to the foregoing, we can get:

y] 2
sU pi’(z) ! g &Y (1Y
_ .m n=i [l/. s Q )
5T2 W2 Q m+;:0 qmn(k) <a) (b +p11)“Q

< S g0 <5> (g) (mati—n)  (16a)

m+n=0 a

or

SU oU 2 oU 5
U( i’) (16b)

o, Tt TV %

Note that in the derivation of expressions (14) and (16) it was assumed that coefficient p;;
are independent of .
Now let us consider the translations of the second group.

Translation S = 3
The crack as a unity is translated parallel to the y-axis by the dy value. Relating the
new local coordinates with the new crack centre, we can write :

X,=x; yh=y—0y; & =£&=d8y; n=n; 6T,=20y (7

By analogy, for crack translation given by (17) it can be obtained :

(SU B B é/—am+n=i+j i gm ﬂ n
o1, = W= Pig DI <a b

m+n=0

menziei o (ENTL g\ o S G (Y (Y s
—p.0O- WO — N i = 2 — [
P ,,,2;:0 qm,n(a> (b) m+p; m;ﬂ) G (a) (b)’ (18a)

or

oU 6U+U<0p(x,y)) (18b)

o, =T T oy

Here it should be noted that the coefficients of the corresponding matrices g%, and ¢,/
are coefficients different in both the dimensionalities and in the magnitudes.
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Translation S = 4
By analogy with the third translation, we write :

X, =x=0x; y,=y; & =& n =n-96x; 6T,=0dx (19)

Similarly to the foregoing, we get :

5U _ 1n/bm+n=i+j . 6 m
5T W4 pij o) m+zn:=0 m.n (2 <

mtn=itj C’ m n n—1 mtn=itj—1 f m n n
—Pile Z Qonl= 7 n+Puin Z Gon lj - T (20a)
m+n=0 a b m+n=0 a b

sU v op(x, y)
o, = T T +U< ox

or

(20b)

Translation S = 5
The crack as a unity is translated by an angle of d¢. In a new coordinate system passing
through the axes of the translated crack:

P =9—0p; x, =x+ydp; y =y—xdp;
& =¢—ndp; ny =n+&ép; O0Ts =0d¢ (21)

For this translation similarly we get :

€N
oUs _ o _ ab® " Vmezies v iy
T e AT
p,, mbnmit €m~1 En—l ézaz B z1.2
lQm;n:Oq () b aﬂm bn
+ an+nZl+j i—lj+1 §’" ) aﬂm+nzl+1 o’ ! ﬁm ﬂ ".‘;L (223)
Py mtn=0 T a )» Py m+n=0 o a b ’
or
sUs U op(p, @)
v +U< = (22b)
or
3Us 6U dp _op
ST.= ot é+U(ay - axy> (22¢)

With this the development of the procedure of crack translation in a nonuniform stress
field is completed.

4. THE MAIN IDEA OF THE STUDY

Consider egn (3). Similarly to the point weight function method (see Orynyak et al.,
1993 ; Orynyak and Borodii, 1995), the loading of the crack faces by a pair unit concentrated
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forces applied symmetrically to the opposite crack faces in the same point with the coor-
dinates (x, y) are taken as the first state. Then

p' =16(x,y) , (23)

where (x, y) is the Dirac function a K] is the weight function or Green’s function for the
stress intensity factor (see Bueckner, 1970). For convenience we write :

ki =E02 0 s (24)

Jra

where F is dimensionless weight function.

For the second state we consider that the displacements of the crack front points U?
are described by eqn (C.1), then the K} values are described by eqn (D). Substituting
expressions (C.1), (D), (5), (6), (23), (24) into (3), we obtain

1 m+n=itj 5U2
—J F(r,p, )us ( Y gy, sin™ rcos” t) drr = (25a)
2 r m+n=0 5TS
or
1 L 8U?
- J U, 0,011 =5 (25b)

Formula (25) is the main formula of the method and the idea of the method is as follows.
Two or more sets of u, and U, are prescribed so that the products u,(#) - K7 are equal for
each of the sets. As it follows from eqn (25), in this case the right-hand sides must be equal.
Taking in one of these sets the Uj value for which, according to eqn (2), coefficients p;"
are known (the first of such values of U3} is the known solution for U in a uniform stress
field), one can determine these coefficients for another law of the crack faces displacement.
With this the procedure of solution is stated.

5. EXAMPLES OF THE SOLUTION

S.1. Crack translation in a uniform stress field
Using translations 1-5 in succession, considering eqn (4) we get from eqn (25) :

2

n

»Q

1 e 1
5| Fsin?6dT =(1—y50)Q+ ——; —f Fcos? 0dT = 7$:3Q +
2)r a’Q r

5 (26a-b)

U re ¢ 1 _n. 1 - _
ELFSIHGdF_aQ’ 2LFCOSHdF—bQ, 2Jchos051n9dF—baQ (26c-¢)

5.2. Linear law of the crack faces displacement
We prescribe the following law of the crack faces displacement :

U=a"0Q @7
a

In accordance with Dyson’s theorem [eqns (1) and (2)], the following law of the crack faces
loading fits it:
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) X
p(x.») = pao+pin @) +po:) <E) (28a)
1,0 ,0,1

Since pioged +p10g60 +peigos = 0 [otherwise the displacements would not have taken
the form (27)], applying a zero translation to eqn (27) according to formula (11a), using
formula (25) and taking into account the dimensionless K value corresponding to eqn (27),
we get:

1 i g
: stm bar = = —pigsio 29)

Comparing eqns (29) and (26c), it is evident that pi: = 0. Apply the fourth translation to
eqn (27) according to eqn (20b). Using expressions (25) and (26¢) we similarly get that
1,0
poi = 0.
Thus we have demonstrated that if the displacements are prescribed in the form of eqn
(27), the following loading corresponds to them

Y
p(x.») =pi <;> (28b)
Similarly, it can be shown that if
o Ui
UG, m) =a; Q (30a)
then
0.1 X
p(x,y) = po 7 (30b)

To definite coefficient py?, we shall apply the third translation to expression (27). In
accordance with eqn (18b), we have:

U 2l Q

Substituting (31) into eqn (25) for S = 3 we get that the left-hand sides of the expression
obtained and of (26a) are equal. Therefore, comparing their right-hand sides and taking
into account eqn (15) and the fact that g5 = 1/E(k), we get:

. d (32)
Pis BRI +K) - (1-k)K®K)

1.0
1.0

g =

where K(k) is the complete elliptic integral of the first kind. The result obtained agrees with
the known solution of Shah and Kobayashi (1971).

To determine coefficient p{!, apply to expression (30a) the fourth translation according
to eqn (20b). Substituting all necessary parameters into eqn (25b) and comparing the result
with eqn (26b), we get

1 s
g == 2 (33)
Phl (1=K ®R) + 2k — DE®)

Expression (33) coincides with the known solution of Shah and Kobayashi (1971).
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For later use we shall need expressions like (26) and those set up from the known
solutions for the crack faces displacements described by formulas (27) and (30a). As it was
mentioned above, the methodology of the crack translation devised in Section 3 (for § = 1
and S = 2) is valid when the coefficient p}’/" are independent of A. Hence, rewrite the
obtained equations once again:

&
p(x,y) =§=>U=q}38azﬂ (34a)

plx.y) = =U=ghla, @ (34b)

=

Here coefficient ¢1°) and ¢o:} have been defined by formulas (32) and (33). For the crack
eqn (34a) we make the first translation in accordance with eqn (14b) and substitute the
result into formula (25). Considering eqns (15) and (34a) we get:

1 ¢ g ¢

2LFsm GdF—vQ%—‘B—;Q)},G (35a)
Subtracting eqn (35a) from expression (26¢), we get:

l M 2 é ’72 é 1.0

EJ;FSIHHCOS 0dl"=;bz—Q+;y1_OQ (35b)

Similarly, making the first translation for crack eqn (34b), we get:

1 L2 PN S PNy
2LFcosGsm BdF—bQ+b Q_th’" (35¢)
Subtracting expression (35¢) from eqn (26d), we obtain:
' Feos? dr = 1= + Tayu (35d)
2 po b

5.3. The law of the crack faces displacement is proportional to the product (& x 1)
Let:

Uue,m = (36a)

[ l‘f‘\‘
Q“[Q

In the general case, the following law of the crack faces loading corresponds to those
displacements :

2 2
y Xy y x
p(x,¥) = poo+pis (5>+pézl <b>+p1 1 (b;>+p5:é (;) + o (5) (36b)

Applying a zero translation to eqn (36a) according to formula (11b), substituting the results
into eqn (25) and comparing with eqn (26e), we obtain:
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pes =pio=psi =0 (37a)

Now applying the fourth translation to eqn (36a) according to formula (20b), substituting
the result into eqn (25) and comparing with eqn (35b), we get:

po2=0 (37b)
ol :EZk“ —;k2+2_K(I—k2]1£2—k2) (370)

Note that by using the third translation for eqn (36a), similarly we can get :
P =0 (37d)

Therefore, the only nonzero coefficient in expansion (36b) is determined by eqn (37¢) which
fully agrees with the known solutions of Shah and Kobayashi (1971) and Shail (1978).

5.4. One formal generalization

In previous examples we have obtained many zero coeflicients. Let us generalize this
result in order to simplify the form of representing the polynomials sought. Thus:

Only if the pairs of numbers i and m; j and # are the numbers of similar evennes (‘0"
is considered to be even), the coefficients g}, and p}" are not equal to zero. In other words:

if {li—m|=2z,+1 or |j—n|=2z,+1}, then g, =pr"=0 (38)

where z, and z, are whole numbers 0, 1, 2,....
Condition eqn (38) corresponds to the analysis of Shah and Kobayashi (1971), Bor-
odachev (1981), etc.

5.5. Quadratic law of the crack faces displacement
Let:

& n?
U(éa 'I) = a_zg; U(é: 7]) = a_Q (393.—b)
a b?

In order to find the corresponding loading coefficients we apply the zero, the fourth and
third translations to eqn (39). Comparing the results obtained for eqn (39a) with expressions
(26a), (35¢), (35a), and similarly the results obtained for eqn (39b) with expressions (26b),
(35d), (35b), we get:

1700 3—7i0 1—75i
2,0 > 2,0 s 2.0 -
Poo = — s P = y Pox = (40a—)
2450 2:q13% 2+ q0';
and
0,0 0,1 1.0
Yo! 24y i
phd == phi= pil = (41a—)
24570 240 2g170

Note that the coefficients of the matrix
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g0 0 0
(0] ={q00 458 953 (42)
g0 920 403
are related to the coefficients of the matrix
pes 00
[Pl =\p3s pio DPo3 (43)
o PY6 o
in the following way :
[Q1=1[P]"" 44)

This allows g, to be calculated from the known pJy". For quadratic law of loading
considered they are equal to:

E*(7k* —5) + EK(1 —k?)(8 — 6k2) — K23(1 — k?)?

e 6A(k)E (45a)
483 = Ez(l_kz)(‘z"z“5)+Eé</§1(k—)]/j)(8—2k2)—1<23(1 — k) sh)
gy = O 2K _23) :( gfz(l —k)(2+3k%) s
935 = E' (=D gAk(ZZ)EEKM —k?)? w50
sy = GO D _EKA @ +K) -
where
A = E*(— 114+ 11K +4k*) + EK(1 k) (16 —8k*) — K*5(1 —k*)° ©

2

6. CONCLUDING REMARKS

In the present paper we have not made it our goal to obtain new values for X,. The
main result is that a new method is proposed which is appreciably simpler than the known
methods. It does not require the boundary problem solution and actually represents itself
the recurrent procedure. Suffice to say that the only technical complexities of the method
are : differentiation of complete elliptic integrals :

E_E K K__E_ K )
ek k k ok (—kHk k

and transformation of the matrices by formula (44). This makes the method accessible
virtually for every engineer. A general scheme of the application of the method is as follows :
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(1) For the known solutions the first and the second translations of the crack are made.
By substituting the required expressions into formula (25) the reference integrals are
determined.

(2) The unknown coefficients p/" in the expansion of the loading for the chosen form of
displacements are determined by carrying out the zero, the third and fourth translations
of the crack, substituting the corresponding values into integral formula (25) and
comparing the obtained integrals with the reference ones.

(3) Inverse coefficients ¢/, are defined from formula (44) and again a transfer is made to
procedure 1.
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